Pricing under rough volatility
Christian Bayer,
Peter Friz and
Jim Gatheral
Quantitative Finance, 2016, vol. 16, issue 6, 887-904
Abstract:
From an analysis of the time series of realized variance using recent high-frequency data, Gatheral et al. [Volatility is rough, 2014] previously showed that the logarithm of realized variance behaves essentially as a fractional Brownian motion with Hurst exponent H of order 0.1, at any reasonable timescale. The resulting Rough Fractional Stochastic Volatility (RFSV) model is remarkably consistent with financial time series data. We now show how the RFSV model can be used to price claims on both the underlying and integrated variance. We analyse in detail a simple case of this model, the rBergomi model. In particular, we find that the rBergomi model fits the SPX volatility markedly better than conventional Markovian stochastic volatility models, and with fewer parameters. Finally, we show that actual SPX variance swap curves seem to be consistent with model forecasts, with particular dramatic examples from the weekend of the collapse of Lehman Brothers and the Flash Crash.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (236)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1099717 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:6:p:887-904
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2015.1099717
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().