EconPapers    
Economics at your fingertips  
 

Portfolio optimization under a generalized hyperbolic skewed t distribution and exponential utility

John Birge and Luis Chavez-Bedoya

Quantitative Finance, 2016, vol. 16, issue 7, 1019-1036

Abstract: In this paper, we show that if asset returns follow a generalized hyperbolic skewed t distribution, the investor has an exponential utility function and a riskless asset is available, the optimal portfolio weights can be found either in closed form or using a successive approximation scheme. We also derive lower bounds for the certainty equivalent return generated by the optimal portfolios. Finally, we present a study of the performance of mean--variance analysis and Taylor’s series expected utility expansion (up to the fourth moment) to compute optimal portfolios in this framework.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1113307 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:7:p:1019-1036

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2015.1113307

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:16:y:2016:i:7:p:1019-1036