Modelling electricity prices: a time change approach
Lingfei Li,
Rafael Mendoza-Arriaga,
Zhiyu Mo and
Daniel Mitchell
Quantitative Finance, 2016, vol. 16, issue 7, 1089-1109
Abstract:
To capture mean reversion and sharp seasonal spikes observed in electricity prices, this paper develops a new stochastic model for electricity spot prices by time changing the Jump Cox-Ingersoll-Ross (JCIR) process with a random clock that is a composite of a Gamma subordinator and a deterministic clock with seasonal activity rate. The time-changed JCIR process is a time-inhomogeneous Markov semimartingale which can be either a jump-diffusion or a pure-jump process, and it has a mean-reverting jump component that leads to mean reversion in the prices in addition to the smooth mean-reversion force. Furthermore, the characteristics of the time-changed JCIR process are seasonal, allowing spikes to occur in a seasonal pattern. The Laplace transform of the time-changed JCIR process can be efficiently computed by Gauss--Laguerre quadrature. This allows us to recover its transition density through efficient Laplace inversion and to calibrate our model using maximum likelihood estimation. To price electricity derivatives, we introduce a class of measure changes that transforms one time-changed JCIR process into another time-changed JCIR process. We derive a closed-form formula for the futures price and obtain the Laplace transform of futures option price in terms of the Laplace transform of the time-changed JCIR process, which can then be efficiently inverted to yield the option price. By fitting our model to two major electricity markets in the US, we show that it is able to capture both the trajectorial and the statistical properties of electricity prices. Comparison with a popular jump-diffusion model is also provided.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1125521 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:7:p:1089-1109
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2015.1125521
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().