On an automatic and optimal importance sampling approach with applications in finance
Huei-Wen Teng,
Cheng-Der Fuh and
Chun-Chieh Chen
Quantitative Finance, 2016, vol. 16, issue 8, 1259-1271
Abstract:
Calculating high-dimensional integrals efficiently is essential and challenging in many scientific disciplines, such as pricing financial derivatives. This paper proposes an exponentially tilted importance sampling based on the criterion of minimizing the variance of the importance sampling estimators, and its contribution is threefold: (1) A theoretical foundation to guarantee the existence, uniqueness, and characterization of the optimal tilting parameter is built. (2) The optimal tilting parameter can be searched via an automatic Newton’s method. (3) Simplified yet competitive tilting formulas are further proposed to reduce heavy computational cost and numerical instability in high-dimensional cases. Numerical examples in pricing path-dependent derivatives and basket default swaps are provided.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2015.1136077 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:8:p:1259-1271
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2015.1136077
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().