EconPapers    
Economics at your fingertips  
 

Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions

Yijie Peng, Michael C. Fu and Jian-Qiang Hu

Quantitative Finance, 2016, vol. 16, issue 9, 1393-1411

Abstract: Parameter estimation and statistical inference are challenging problems for stochastic volatility (SV) models, especially those driven by pure jump Lévy processes. Maximum likelihood estimation (MLE) is usually preferred when a parametric statistical model is correctly specified, but traditional MLE implementation for SV models is computationally infeasible due to high dimensionality of the integral involved. To overcome this difficulty, we propose a gradient-based simulated MLE method under the hidden Markov structure for SV models, which covers those driven by pure jump Lévy processes. Gradient estimation using characteristic functions and sequential Monte Carlo in the simulation of the hidden states are implemented. Numerical experiments illustrate the efficiency of the proposed method.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1185142 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:16:y:2016:i:9:p:1393-1411

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2016.1185142

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:16:y:2016:i:9:p:1393-1411