Dynamic mean–VaR portfolio selection in continuous time
Ke Zhou,
Jiangjun Gao,
Duan Li and
Xiangyu Cui
Quantitative Finance, 2017, vol. 17, issue 10, 1631-1643
Abstract:
The value-at-risk (VaR) is one of the most well-known downside risk measures due to its intuitive meaning and wide spectra of applications in practice. In this paper, we investigate the dynamic mean–VaR portfolio selection formulation in continuous time, while the majority of the current literature on mean–VaR portfolio selection mainly focuses on its static versions. Our contributions are twofold, in both building up a tractable formulation and deriving the corresponding optimal portfolio policy. By imposing a limit funding level on the terminal wealth, we conquer the ill-posedness exhibited in the original dynamic mean–VaR portfolio formulation. To overcome the difficulties arising from the VaR constraint and no bankruptcy constraint, we have combined the martingale approach with the quantile optimization technique in our solution framework to derive the optimal portfolio policy. In particular, we have characterized the condition for the existence of the Lagrange multiplier. When the opportunity set of the market setting is deterministic, the portfolio policy becomes analytical. Furthermore, the limit funding level not only enables us to solve the dynamic mean–VaR portfolio selection problem, but also offers a flexibility to tame the aggressiveness of the portfolio policy.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1298831 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:10:p:1631-1643
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1298831
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().