Risk forecasting in (T)GARCH models with uncorrelated dependent innovations
Benjamin Beckers,
Helmut Herwartz and
Moritz Seidel
Quantitative Finance, 2017, vol. 17, issue 1, 121-137
Abstract:
(G)ARCH-type models are frequently used for the dynamic modelling and forecasting of risk attached to speculative asset returns. While the symmetric and conditionally Gaussian GARCH model has been generalized in a manifold of directions, model innovations are mostly presumed to stem from an underlying IID distribution. For a cross section of 18 stock market indices, we notice that (threshold) (T)GARCH-implied model innovations are likely at odds with the commonly held IID assumption. Two complementary strategies are pursued to evaluate the conditional distributions of consecutive TGARCH innovations, a non-parametric approach and a class of standardized copula distributions. Modelling higher order dependence patterns is found to improve standard TGARCH-implied conditional value-at-risk and expected shortfall out-of-sample forecasts that rely on the notion of IID innovations.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1184303 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:1:p:121-137
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2016.1184303
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().