Alternative to beta coefficients in the context of diffusions
Guillaume Bernis and
Simone Scotti
Quantitative Finance, 2017, vol. 17, issue 2, 275-288
Abstract:
We develop an alternative to the beta coefficient of the CAPM theory. We show the link between this notion and the Wiener chaos expansion of the underlying processes. In the setting of Markov diffusions, we define the drift-neutral beta, which is the quantity of benchmark such that the resulting portfolio is immune to an infinitesimal change of drift on the Brownian motion driving the benchmark. Our approach yields a coefficient which in many practical cases depends on the initial values of both the portfolio and its benchmark. It can also be used to take into account extreme risks and not only the variance. We study several classical diffusion processes and give a full analysis in the case of Jacobi processes. Examples with credit indices show the efficiency of the method in hedging a portfolio.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1188214 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:2:p:275-288
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2016.1188214
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().