EconPapers    
Economics at your fingertips  
 

Prospect theory–based portfolio optimization: an empirical study and analysis using intelligent algorithms

N. Grishina, C. A. Lucas and P. Date

Quantitative Finance, 2017, vol. 17, issue 3, 353-367

Abstract: The behaviourally based portfolio selection problem with investor’s loss aversion and risk aversion biases in portfolio choice under uncertainty is studied. The main results of this work are: developed heuristic approaches for the prospect theory model proposed by Kahneman and Tversky in 1979 as well as an empirical comparative analysis of this model and the index tracking model. The crucial assumption is that behavioural features of the prospect theory model provide better downside protection than traditional approaches to the portfolio selection problem. In this research the large-scale computational results for the prospect theory model have been obtained for real financial market data with up to 225 assets. Previously, as far as we are aware, only small laboratory tests (2–3 artificial assets) have been presented in the literature. In order to investigate empirically the performance of the behaviourally based model, a differential evolution algorithm and a genetic algorithm which are capable of dealing with a large universe of assets have been developed. Specific breeding and mutation, as well as normalization, have been implemented in the algorithms. A tabulated comparative analysis of the algorithms’ parameter choice is presented. The prospect theory model with the reference point being the index is compared to the index tracking model. A cardinality constraint has been implemented to the basic index tracking and the prospect theory models. The portfolio diversification benefit has been found. The aggressive behaviour in terms of returns of the prospect theory model with the reference point being the index leads to better performance of this model in a bullish market. However, it performed worse in a bearish market than the index tracking model. A tabulated comparative analysis of the performance of the two studied models is provided in this paper for in-sample and out-of-sample tests. The performance of the studied models has been tested out-of-sample in different conditions using simulation of the distribution of a growing market and simulation of the t-distribution with fat tails which characterises the dynamics of a decreasing or crisis market.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1149611 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:3:p:353-367

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2016.1149611

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:17:y:2017:i:3:p:353-367