EconPapers    
Economics at your fingertips  
 

Pricing options on mean reverting underliers

Dilip B. Madan

Quantitative Finance, 2017, vol. 17, issue 4, 497-513

Abstract: For mean reverting base probabilities, option pricing models are developed, using an explicit measure change induced by the selection of a terminal time and a terminal random variable. The models employed are the square root process and an OU equation driven by centred variance gamma shocks. VIX options are calibrated using the square root process. The OU equation driven by centred variance gamma shocks is applied in pricing options on the ratio of the stock price for J. P. Morgan Chase (JPM) to the Exchange Traded Fund for the financial sector with ticker XLF. For the purposes of calibrating the ratio option pricing model to market data, we indirectly infer the prices for stock options on JPM from the prices for options on the ratio, by hedging the conditional value of JPM options given XLF, using options on XLF. The implied volatilities for the options on the ratio are then indirectly observed to be fairly flat. This suggests that for JPM, the use XLF as a benchmark is a possibly good choice. It is shown to perform better than the use of the S&P 500 index. Furthermore, though the use of an unrelated stock price like Johnson and Johnson as a benchmark for JPM provides as a good fit as does the use of XLF, this comes at the cost of requiring a considerable smile for the implied volatilities on the ratio options and hence a more complex model for the implied distribution on the ratio.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1219764 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:4:p:497-513

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2016.1219764

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:17:y:2017:i:4:p:497-513