EconPapers    
Economics at your fingertips  
 

Calibrating a market model with stochastic volatility to commodity and interest rate risk

P. Karlsson, K. F. Pilz and Erik Schlogl

Quantitative Finance, 2017, vol. 17, issue 6, 907-925

Abstract: Based on the multi-currency LIBOR Market Model, this paper constructs a hybrid commodity interest rate market model with a stochastic local volatility function allowing the model to simultaneously fit the implied volatility surfaces of commodity and interest rate options. Since liquid market prices are only available for options on commodity futures, rather than forwards, a convexity correction formula for the model is derived to account for the difference between forward and futures prices. A procedure for efficiently calibrating the model to interest rate and commodity volatility smiles is constructed. Finally, the model is fitted to an exogenously given correlation structure between forward interest rates and commodity prices (cross-correlation). When calibrating to options on forwards (rather than futures), the fitting of cross-correlation preserves the (separate) calibration in the two markets (interest rate and commodity options), while in the case of futures a (rapidly converging) iterative fitting procedure is presented. The fitting of cross-correlation is reduced to finding an optimal rotation of volatility vectors, which is shown to be an appropriately modified version of the ‘orthonormal Procrustes’ problem in linear algebra. The calibration approach is demonstrated in an application to market data for oil futures.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1254814 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:6:p:907-925

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2016.1254814

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-04-08
Handle: RePEc:taf:quantf:v:17:y:2017:i:6:p:907-925