Optimal portfolio positioning within generalized Johnson distributions
N. Naguez and
Jean-Luc Prigent
Quantitative Finance, 2017, vol. 17, issue 7, 1037-1055
Abstract:
Many empirical studies have shown that financial asset returns do not always exhibit Gaussian distributions, for example hedge fund returns. The introduction of the family of Johnson distributions allows a better fit to empirical financial data. Additionally, this class can be extended to a quite general family of distributions by considering all possible regular transformations of the standard Gaussian distribution. In this framework, we consider the portfolio optimal positioning problem, which has been first addressed by Brennan and Solanki [J. Financial Quant. Anal., 1981, 16, 279–300], Leland [J. Finance, 1980, 35, 581–594] and further developed by Carr and Madan [Quant. Finance, 2001, 1, 9–37] and Prigent [Generalized option based portfolio insurance. Working Paper, THEMA, University of Cergy-Pontoise, 2006]. As a by-product, we introduce the notion of Johnson stochastic processes. We determine and analyse the optimal portfolio for log return having Johnson distributions. The solution is characterized for arbitrary utility functions and illustrated in particular for a CRRA utility. Our findings show how the profiles of financial structured products must be selected when taking account of non Gaussian log-returns.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1253859 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Optimal portfolio positioning within generalized Johnson distributions (2017)
Working Paper: Optimal Portfolio Positioning within Generalized Johnson Distributions (2014) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:7:p:1037-1055
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2016.1253859
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().