Dynamic factor long memory volatility
Richard Harris and
Anh T. H. Nguyen
Quantitative Finance, 2017, vol. 17, issue 8, 1205-1221
Abstract:
In this paper, we develop a long memory orthogonal factor (LMOF) multivariate volatility model for forecasting the covariance matrix of financial asset returns. We evaluate the LMOF model using the volatility timing framework of Fleming et al. [J. Finance, 2001, 56, 329–352] and compare its performance with that of both a static investment strategy based on the unconditional covariance matrix and a range of dynamic investment strategies based on existing short memory and long memory multivariate conditional volatility models. We show that investors should be willing to pay to switch from the static strategy to a dynamic volatility timing strategy and that, among the dynamic strategies, the LMOF model consistently produces forecasts of the covariance matrix that are economically more useful than those produced by the other multivariate conditional volatility models, both short memory and long memory. Moreover, we show that combining long memory volatility with the factor structure yields better results than employing either long memory volatility or the factor structure alone. The factor structure also significantly reduces transaction costs, thus increasing the feasibility of dynamic volatility timing strategies in practice. Our results are robust to estimation error in expected returns, the choice of risk aversion coefficient, the estimation window length and sub-period analysis.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1260757 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:8:p:1205-1221
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2016.1260757
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().