A novel Monte Carlo approach to hybrid local volatility models
Anthonie W. van der Stoep,
Lech Grzelak and
Cornelis Oosterlee
Quantitative Finance, 2017, vol. 17, issue 9, 1347-1366
Abstract:
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant. Finance, 2014, 14, 1899–1922], Piterbarg [Risk, 2007, April, 84–89], Tataru and Fisher [Quantitative Development Group, Bloomberg Version 1, 2010], Lipton [Risk, 2002, 15, 61–66]—and the local volatility model incorporating stochastic interest rates—see e.g. Atlan [ArXiV preprint math/0604316, 2006], Piterbarg [Risk, 2006, 19, 66–71], Deelstra and Rayée [Appl. Math. Finance, 2012, 1–23], Ren et al. [Risk, 2007, 20, 138–143]. For both model classes a particular (conditional) expectation needs to be evaluated which cannot be extracted from the market and is expensive to compute. We establish accurate and ‘cheap to evaluate’ approximations for the expectations by means of the stochastic collocation method [SIAM J. Numer. Anal., 2007, 45, 1005–1034], [SIAM J. Sci. Comput., 2005, 27, 1118–1139], [Math. Models Methods Appl. Sci., 2012, 22, 1–33], [SIAM J. Numer. Anal., 2008, 46, 2309–2345], [J. Biomech. Eng., 2011, 133, 031001], which was recently applied in the financial context [Available at SSRN 2529691, 2014], [J. Comput. Finance, 2016, 20, 1–19], combined with standard regression techniques. Monte Carlo pricing experiments confirm that our method is highly accurate and fast.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1280613 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:9:p:1347-1366
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1280613
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().