EconPapers    
Economics at your fingertips  
 

Extreme risk spillover network: application to financial institutions

Gang-Jin Wang, Chi Xie, Kaijian He and H. Eugene Stanley

Quantitative Finance, 2017, vol. 17, issue 9, 1417-1433

Abstract: Using the CAViaR tool to estimate the value-at-risk (VaR) and the Granger causality risk test to quantify extreme risk spillovers, we propose an extreme risk spillover network for analysing the interconnectedness across financial institutions. We construct extreme risk spillover networks at 1% and 5% risk levels (which we denote 1% and 5% VaR networks) based on the daily returns of 84 publicly listed financial institutions from four sectors—banks, diversified financials, insurance and real estate—during the period 2006–2015. We find that extreme risk spillover networks have a time-lag effect. Both the static and dynamic networks show that on average the real estate and bank sectors are net senders of extreme risk spillovers and the insurance and diversified financials sectors are net recipients, which coheres with the evidence from the recent global financial crisis. The networks during the 2008–2009 financial crisis and the European sovereign debt crisis exhibited distinctive topological features that differed from those in tranquil periods. Our approach supplies new information on the interconnectedness across financial agents that will prove valuable not only to investors and hedge fund managers, but also to regulators and policy-makers.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (125)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2016.1272762 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:17:y:2017:i:9:p:1417-1433

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2016.1272762

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:17:y:2017:i:9:p:1417-1433