A Markov-switching generalized additive model for compound Poisson processes, with applications to operational loss models
Julien Hambuckers,
T. Kneib,
R. Langrock and
A. Silbersdorff
Quantitative Finance, 2018, vol. 18, issue 10, 1679-1698
Abstract:
This paper is concerned with modelling the behaviour of random sums over time. Such models are particularly useful to describe the dynamics of operational losses, and to correctly estimate tail-related risk indicators. However, time-varying dependence structures make it a difficult task. To tackle these issues, we formulate a new Markov-switching generalized additive compound process combining Poisson and generalized Pareto distributions. This flexible model takes into account two important features: on the one hand, we allow all parameters of the compound loss distribution to depend on economic covariates in a flexible way. On the other hand, we allow this dependence to vary over time, via a hidden state process. A simulation study indicates that, even in the case of a short time series, this model is easily and well estimated with a standard maximum likelihood procedure. Relying on this approach, we analyse a novel data-set of 819 losses resulting from frauds at the Italian bank UniCredit. We show that our model improves the estimation of the total loss distribution over time, compared to standard alternatives. In particular, this model provides estimations of the 99.9% quantile that are never exceeded by the historical total losses, a feature particularly desirable for banking regulators.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1417625 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:10:p:1679-1698
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1417625
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().