EconPapers    
Economics at your fingertips  
 

The survival probability of the SABR model: asymptotics and application

Nian Yang and Xiangwei Wan

Quantitative Finance, 2018, vol. 18, issue 10, 1767-1779

Abstract: The stochastic-alpha-beta-rho (SABR) model is widely used by practitioners in interest rate and foreign exchange markets. The probability of hitting zero sheds light on the arbitrage-free small strike implied volatility of the SABR model (see, e.g. De Marco et al. [SIAM J. Financ. Math., 2017, 8(1), 709–737], Gulisashvili [Int. J. Theor. Appl. Financ., 2015, 18, 1550013], Gulisashvili et al. [Mass at zero in the uncorrelated SABR modeland implied volatility asymptotics, 2016b]), and the survival probability is also closely related to binary knock-out options. Besides, the study of the survival probability is mathematically challenging. This paper provides novel asymptotic formulas for the survival probability of the SABR model as well as error estimates. The formulas give the probability that the forward price does not hit a nonnegative lower boundary before a fixed time horizon.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1422083 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:10:p:1767-1779

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2017.1422083

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:18:y:2018:i:10:p:1767-1779