Parisian options with jumps: a maturity–excursion randomization approach
Marc Chesney and
Nikola Vasiljević
Quantitative Finance, 2018, vol. 18, issue 11, 1887-1908
Abstract:
This paper introduces an analytically tractable method for the pricing of European and American Parisian options in a flexible jump–diffusion model. Our contribution is threefold. First, using a double Laplace–Carson transform with respect to the option maturity and the Parisian (excursion) time, we obtain closed-form solutions for different types of Parisian contracts. Our approach allows us also to analytically disentangle contributions of the jump and diffusion components for Parisian options in the excursion region. Second, we provide numerical examples and quantify the impact of jumps on the option price and the Greeks. Finally, we study the non-monotonic effects of volatility and jump intensity close to the excursion barrier, which are important for shareholders’ investment policy decisions in a levered firm.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2018.1444785 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:11:p:1887-1908
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2018.1444785
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().