Relative Robust Portfolio Optimization with benchmark regret
Gonçalo Simões,
Mark McDonald,
Stacy Williams,
Daniel Fenn and
Raphael Hauser
Quantitative Finance, 2018, vol. 18, issue 12, 1991-2003
Abstract:
We extend Relative Robust Portfolio Optimization models to allow portfolios to optimize their performance when considered relative to a set of benchmarks. We do this in a minimum volatility setting, where we model regret directly as the maximum difference between our volatility and that of a given benchmark. Portfolio managers are also given the option of computing regret as a proportion of the benchmark’s performance, which is more in line with market practice than other approaches suggested in the literature. Furthermore, we propose using regret as an extra constraint rather than as a brand new objective function, so practitioners can maintain their current framework. We also look into how such a triple optimization problem can be solved or at least approximated for a general class of objective functions and uncertainty and benchmark sets. Finally, we illustrate the benefits of this approach by examining its performance against other common methods in the literature in several equity markets.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2018.1453940 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:12:p:1991-2003
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2018.1453940
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().