How does the choice of Value-at-Risk estimator influence asset allocation decisions?
Felix Scheller and
Benjamin R. Auer
Quantitative Finance, 2018, vol. 18, issue 12, 2005-2022
Abstract:
Considering the growing need for managing financial risk, Value-at-Risk (VaR) prediction and portfolio optimisation with a focus on VaR have taken up an important role in banking and finance. Motivated by recent results showing that the choice of VaR estimator does not crucially influence decision-making in certain practical applications (e.g. in investment rankings), this study analyses the important question of how asset allocation decisions are affected when alternative VaR estimation methodologies are used. Focusing on the most popular, successful and conceptually different conditional VaR estimation techniques (i.e. historical simulation, peak over threshold method and quantile regression) and the flexible portfolio model of Campbell et al. [J. Banking Finance. 2001, 25(9), 1789–1804], we show in an empirical example and in a simulation study that these methods tend to deliver similar asset weights. In other words, optimal portfolio allocations appear to be not very sensitive to the choice of VaR estimator. This finding, which is robust in a variety of distributional environments and pre-whitening settings, supports the notion that, depending on the specific application, simple standard methods (i.e. historical simulation) used by many commercial banks do not necessarily have to be replaced by more complex approaches (based on, e.g. extreme value theory).
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2018.1459806 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:12:p:2005-2022
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2018.1459806
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().