EconPapers    
Economics at your fingertips  
 

Transform analysis for Hawkes processes with applications in dark pool trading

Xuefeng Gao, Xiang Zhou and Lingjiong Zhu

Quantitative Finance, 2018, vol. 18, issue 2, 265-282

Abstract: Hawkes processes are a class of simple point processes that are self-exciting and have a clustering effect, with wide applications in finance, social networks and many other fields. This paper considers a self-exciting Hawkes process where the baseline intensity is time-dependent, the exciting function is a general function and the jump sizes of the intensity process are independent and identically distributed nonnegative random variables. This Hawkes model is non-Markovian in general. We obtain closed-form formulas for the Laplace transform, moments and the distribution of the Hawkes process. To illustrate the applications of our results, we use the Hawkes process to model the clustered arrival of trades in a dark pool and analyse various performance metrics including time-to-first-fill, time-to-complete-fill and the expected fill rate of a resting dark order.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1403151 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:2:p:265-282

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2017.1403151

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:18:y:2018:i:2:p:265-282