A Bayesian encompassing test using combined value-at-risk estimates
Georgios Tsiotas
Quantitative Finance, 2018, vol. 18, issue 3, 395-417
Abstract:
The Value at Risk (VaR) is a risk measure that is widely used by financial institutions in allocating risk. VaR forecast estimation involves the conditional evaluation of quantiles based on the currently available information. Recent advances in VaR evaluation incorporate conditional variance into the quantile estimation, yielding the Conditional Autoregressive VaR (CAViaR) models. However, the large number of alternative CAViaR models raises the issue of identifying the optimal quantile predictor. To resolve this uncertainty, we propose a Bayesian encompassing test that evaluates various CAViaR models predictions against a combined CAViaR model based on the encompassing principle. This test provides a basis for forecasting combined conditional VaR estimates when there are evidences against the encompassing principle. We illustrate this test using simulated and financial daily return data series. The results demonstrate that there are evidences for using combined conditional VaR estimates when forecasting quantile risk.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1330551 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:3:p:395-417
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1330551
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().