A logistic regression point of view toward loss given default distribution estimation
Ruey-Ching Hwang and
Chih-Kang Chu
Quantitative Finance, 2018, vol. 18, issue 3, 419-435
Abstract:
We propose a new procedure to estimate the loss given default (LGD) distribution. Owing to the complicated shape of the LGD distribution, using a smooth density function as a driver to estimate it may result in a decline in model fit. To overcome this problem, we first apply the logistic regression to estimate the LGD cumulative distribution function. Then, we convert the result into the LGD distribution estimate. To implement the newly proposed estimation procedure, we collect a sample of 5269 defaulted debts from Moody’s Default and Recovery Database. A performance study is performed using 2000 pairs of in-sample and out-of-sample data-sets with different sizes that are randomly selected from the entire sample. Our results show that the newly proposed procedure has better and more robust performance than its alternatives, in the sense of yielding more accurate in-sample and out-of-sample LGD distribution estimates. Thus, it is useful for studying the LGD distribution.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1310393 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:3:p:419-435
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1310393
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().