A new integral equation formulation for American put options
Song-Ping Zhu,
Xin-Jiang He and
XiaoPing Lu
Quantitative Finance, 2018, vol. 18, issue 3, 483-490
Abstract:
In this paper, a completely new integral equation for the price of an American put option as well as its optimal exercise price is successfully derived. Compared to existing integral equations for pricing American options, the new integral formulation has two distinguishable advantages: (i) it is in a form of one-dimensional integral, and (ii) it is in a form that is free from any discontinuity and singularities associated with the optimal exercise boundary at the expiry time. These rather unique features have led to a significant enhancement of the computational accuracy and efficiency as shown in the examples.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1348617 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:3:p:483-490
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1348617
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().