Analytic value function for optimal regime-switching pairs trading rules
Yang Bai and
Lan Wu
Quantitative Finance, 2018, vol. 18, issue 4, 637-654
Abstract:
We introduce a regime-switching Ornstein–Uhlenbeck (O–U) model to address an optimal investment problem. Our study gives a closed-form expression for a regime-switching pairs trading value function consisting of probability and expectation of the double boundary stopping time of the Markov-modulated O–U process. We derive analytic solutions for the homogenous and non-homogenous ODE systems with initial value conditions for probability and expectation of the double boundary stopping time, and translate the solutions with boundary value conditions into solutions with initial value conditions. Based on the smoothness and continuity of the value function, we can obtain the optimum of the value function with thresholds and guarantee the existence of optimal thresholds in a finite closed interval. Our numerical analysis illustrates the rationality of theoretical model and the shape of transition probability and expected stopping time, as well as discusses sensitivity analysis in both one-state and two-state regime-switching models. We find that the optimal expected return per unit time in the two-state regime-switching model is higher than that of one-state regime-switching model. Likewise, the regime-switching model’s optimal thresholds are closer and more symmetric to the long-term mean.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1336281 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:4:p:637-654
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1336281
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().