EconPapers    
Economics at your fingertips  
 

Forecasting and trading high frequency volatility on large indices

Fei Liu, Athanasios A. Pantelous and Hans-Jörg von Mettenheim

Quantitative Finance, 2018, vol. 18, issue 5, 737-748

Abstract: The present paper analyses the forecastability and tradability of volatility on the large S&P500 index and the liquid SPY ETF, VIX index and VXX ETN. Even though there is already a huge array of literature on forecasting high frequency volatility, most publications only evaluate the forecast in terms of statistical errors. In practice, this kind of analysis is only a minor indication of the actual economic significance of the forecast that has been developed. For this reason, in our approach, we also include a test of our forecast through trading an appropriate volatility derivative. As a method we use parametric and artificial intelligence models. We also combine these models in order to achieve a hybrid forecast. We report that the results of all three model types are of similar quality. However, we observe that artificial intelligence models are able to achieve these results with a shorter input time frame and the errors are uniformly lower comparing with the parametric one. Similarly, the chosen models do not appear to differ much while the analysis of trading efficiency is performed. Finally, we notice that Sharpe ratios tend to improve for longer forecast horizons.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1414489 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:5:p:737-748

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2017.1414489

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:18:y:2018:i:5:p:737-748