EconPapers    
Economics at your fingertips  
 

Pricing and hedging guaranteed minimum withdrawal benefits under a general Lévy framework using the COS method

Jennifer Alonso-García, Oliver Wood and Jonathan Ziveyi

Quantitative Finance, 2018, vol. 18, issue 6, 1049-1075

Abstract: This paper extends the Fourier-cosine (COS) method to the pricing and hedging of variable annuities embedded with guaranteed minimum withdrawal benefit (GMWB) riders. The COS method facilitates efficient computation of prices and hedge ratios of the GMWB riders when the underlying fund dynamics evolve under the influence of the general class of Lévy processes. Formulae are derived to value the contract at each withdrawal date using a backward recursive dynamic programming algorithm. Numerical comparisons are performed with results presented in Bacinello et al. [Scand. Actuar. J., 2014, 1–20], and Luo and Shevchenko [Int. J. Financ. Eng., 2014, 2, 1–24], to confirm the accuracy of the method. The efficiency of the proposed method is assessed by making comparisons with the approach presented in Bacinello et al. [op. cit.]. We find that the COS method presents highly accurate results with notably fast computational times. The valuation framework forms the basis for GMWB hedging. A local risk minimisation approach to hedging intra-withdrawal date risks is developed. A variety of risk measures are considered for minimisation in the general Lévy framework. While the second moment and variance have been considered in existing literature, we show that the Value-at-Risk (VaR) may also be of interest as a risk measure to minimise risk in variable annuities portfolios.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1357832 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:6:p:1049-1075

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2017.1357832

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:18:y:2018:i:6:p:1049-1075