Calibration to American options: numerical investigation of the de-Americanization method
O. Burkovska,
M. Gass,
K. Glau,
M. Mahlstedt,
W. Schoutens and
B. Wohlmuth
Quantitative Finance, 2018, vol. 18, issue 7, 1091-1113
Abstract:
American options are the reference instruments for the model calibration of a large and important class of single stocks. For this task, a fast and accurate pricing algorithm is indispensable. The literature mainly discusses pricing methods for American options that are based on Monte Carlo, tree and partial differential equation methods. We present an alternative approach that has become popular under the name de-Americanization in the financial industry. The method is easy to implement and enjoys fast run-times (compared to a direct calibration to American options). Since it is based on ad hoc simplifications, however, theoretical results guaranteeing reliability are not available. To quantify the resulting methodological risk, we empirically test the performance of the de-Americanization method for calibration. We classify the scenarios in which de-Americanization performs very well. However, we also identify the cases where de-Americanization oversimplifies and can result in large errors.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1417622 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:7:p:1091-1113
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1417622
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().