Learning minimum variance discrete hedging directly from the market
Ke Nian,
Thomas F. Coleman and
Yuying Li
Quantitative Finance, 2018, vol. 18, issue 7, 1115-1128
Abstract:
Option hedging is a critical risk management problem in finance. In the Black–Scholes model, it has been recognized that computing a hedging position from the sensitivity of the calibrated model option value function is inadequate in minimizing variance of the option hedge risk, as it fails to capture the model parameter dependence on the underlying price (see e.g. Coleman et al., J. Risk, 2001, 5(6), 63–89; Hull and White, J. Bank. Finance, 2017, 82, 180–190). In this paper, we demonstrate that this issue can exist generally when determining hedging position from the sensitivity of the option function, either calibrated from a parametric model from current option prices or estimated nonparametricaly from historical option prices. Consequently, the sensitivity of the estimated model option function typically does not minimize variance of the hedge risk, even instantaneously. We propose a data-driven approach to directly learn a hedging function from the market data by minimizing variance of the local hedge risk. Using the S&P 500 index daily option data for more than a decade ending in August 2015, we show that the proposed method outperforms the parametric minimum variance hedging method proposed in Hull and White [J. Bank. Finance, 2017, 82, 180–190], as well as minimum variance hedging corrective techniques based on stochastic volatility or local volatility models. Furthermore, we show that the proposed approach achieves significant gain over the implied BS delta hedging for weekly and monthly hedging.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1413245 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:7:p:1115-1128
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1413245
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().