EconPapers    
Economics at your fingertips  
 

Optimal investment strategies for general utilities under dynamic elasticity of variance models

Wenyuan Li and Jingtang Ma

Quantitative Finance, 2018, vol. 18, issue 8, 1379-1388

Abstract: This paper studies the optimal investment strategies under the dynamic elasticity of variance (DEV) model which maximize the expected utility of terminal wealth. The DEV model is an extension of the constant elasticity of variance model, in which the volatility term is a power function of stock prices with the power being a nonparametric time function. It is not possible to find the explicit solution to the utility maximization problem under the DEV model. In this paper, a dual-control Monte-Carlo method is developed to compute the optimal investment strategies for a variety of utility functions, including power, non-hyperbolic absolute risk aversion and symmetric asymptotic hyperbolic absolute risk aversion utilities. Numerical examples show that this dual-control Monte-Carlo method is quite efficient.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1397284 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:18:y:2018:i:8:p:1379-1388

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2017.1397284

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:18:y:2018:i:8:p:1379-1388