Simulation-based Value-at-Risk for nonlinear portfolios
Junyao Chen,
Tony Sit and
Hoi Ying Wong
Quantitative Finance, 2019, vol. 19, issue 10, 1639-1658
Abstract:
Value-at-risk (VaR) has been playing the role of a standard risk measure since its introduction. In practice, the delta-normal approach is usually adopted to approximate the VaR of portfolios with option positions. Its effectiveness, however, substantially diminishes when the portfolios concerned involve a high dimension of derivative positions with nonlinear payoffs; lack of closed form pricing solution for these potentially highly correlated, American-style derivatives further complicate the problem. This paper proposes a generic simulation-based algorithm for VaR estimation that can be easily applied to any existing procedures. Our proposal leverages cross-sectional information and applies variable selection techniques to simplify the existing simulation framework. Asymptotic properties of the new approach demonstrate faster convergence due to the additional model selection component introduced. We have also performed sets of numerical results that verify the effectiveness of our approach in comparison with some existing strategies.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1598568 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:10:p:1639-1658
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2019.1598568
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().