Volatility modeling and prediction: the role of price impact
Ying Jiang,
Yi Cao,
Xiaoquan Liu and
Jia Zhai
Quantitative Finance, 2019, vol. 19, issue 12, 2015-2031
Abstract:
In this paper, we are interested in exploring the role of price impact, derived from the order book, in modeling and predicting stock volatility. This is motivated by the market microstructure literature that examines the mechanics of price formation and its relevance to market quality. Using a comprehensive dataset of intraday bids, asks, and three levels of market depths for 148 stocks in the Shanghai Stock Exchange from 2005 to 2016, we find substantial intraday impact from incoming bid and ask limit and market orders on stock prices. More importantly, the permanent price impact at the daily level is a significant determinant of stock volatility dynamics as suggested by the panel VAR estimation. Furthermore, when we augment traditional volatility models with the time series of daily price impact, the augmented models produce significantly more accurate volatility predictions at the one-day ahead forecasting horizon. These volatility predictions also offer economic gains to a mean-variance utility investor in a portfolio setting.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1636123 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:12:p:2015-2031
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2019.1636123
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().