EconPapers    
Economics at your fingertips  
 

Forecasting jump arrivals in stock prices: new attention-based network architecture using limit order book data

Ymir Mäkinen, Juho Kanniainen, Moncef Gabbouj and Alexandros Iosifidis

Quantitative Finance, 2019, vol. 19, issue 12, 2033-2050

Abstract: The existing literature provides evidence that limit order book data can be used to predict short-term price movements in stock markets. This paper proposes a new neural network architecture for predicting return jump arrivals one minute ahead in equity markets with high-frequency limit order book data. This new architecture, based on Convolutional Long Short-Term Memory with Attention, is introduced to apply time series representation learning with memory and to focus the prediction attention on the most important features to improve performance. The use of the attention mechanism makes it possible to analyze the importance of the inclusion limit order book data and other input variables. Our architecture with this mechanism is used and compared to existing deep learning architectures with the data set that consists of order book data on five liquid U.S. stocks over 18 months. We provide evidence that (i) the new architecture with attention model outperforms existing architectures and (ii) the use of limit order book data was found to improve the performance of the proposed model in jump prediction, either clearly or marginally, depending on the underlying stock. This suggests that path-dependence in limit order book markets is a stock specific feature. Moreover, we find that the proposed approach with an attention mechanism outperforms the multi-layer perceptron network as well as the convolutional neural network and Long Short-Term memory model.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1634277 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:12:p:2033-2050

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2019.1634277

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-27
Handle: RePEc:taf:quantf:v:19:y:2019:i:12:p:2033-2050