The stochastic collocation Monte Carlo sampler: highly efficient sampling from ‘expensive’ distributions
Lech Grzelak,
J. A. S. Witteveen,
M. Suárez-Taboada and
Cornelis Oosterlee
Quantitative Finance, 2019, vol. 19, issue 2, 339-356
Abstract:
In this article, we propose an efficient approach for inverting computationally expensive cumulative distribution functions. A collocation method, called the Stochastic Collocation Monte Carlo sampler (SCMC sampler), within a polynomial chaos expansion framework, allows us the generation of any number of Monte Carlo samples based on only a few inversions of the original distribution plus independent samples from a standard normal variable. We will show that with this path-independent collocation approach the exact simulation of the Heston stochastic volatility model, as proposed in Broadie and Kaya [Oper. Res., 2006, 54, 217–231], can be performed efficiently and accurately. We also show how to efficiently generate samples from the squared Bessel process and perform the exact simulation of the SABR model.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2018.1459807 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:2:p:339-356
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2018.1459807
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().