EconPapers    
Economics at your fingertips  
 

The stochastic collocation Monte Carlo sampler: highly efficient sampling from ‘expensive’ distributions

Lech Grzelak, J. A. S. Witteveen, M. Suárez-Taboada and Cornelis Oosterlee

Quantitative Finance, 2019, vol. 19, issue 2, 339-356

Abstract: In this article, we propose an efficient approach for inverting computationally expensive cumulative distribution functions. A collocation method, called the Stochastic Collocation Monte Carlo sampler (SCMC sampler), within a polynomial chaos expansion framework, allows us the generation of any number of Monte Carlo samples based on only a few inversions of the original distribution plus independent samples from a standard normal variable. We will show that with this path-independent collocation approach the exact simulation of the Heston stochastic volatility model, as proposed in Broadie and Kaya [Oper. Res., 2006, 54, 217–231], can be performed efficiently and accurately. We also show how to efficiently generate samples from the squared Bessel process and perform the exact simulation of the SABR model.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2018.1459807 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:2:p:339-356

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2018.1459807

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:19:y:2019:i:2:p:339-356