Exploiting social media with higher-order Factorization Machines: statistical arbitrage on high-frequency data of the S&P 500
Julian Knoll,
Johannes Stübinger and
Michael Grottke
Quantitative Finance, 2019, vol. 19, issue 4, 571-585
Abstract:
Over the past 15 years, there have been a number of studies using text mining for predicting stock market data. Two recent publications employed support vector machines and second-order Factorization Machines, respectively, to this end. However, these approaches either completely neglect interactions between the features extracted from the text, or they only account for second-order interactions. In this paper, we apply higher-order Factorization Machines, for which efficient training algorithms have only been available since 2016. As Factorization Machines require hyperparameters to be specified, we also introduce a novel adaptive-order algorithm for automatically determining them. Our study is the first one to make use of social media data for predicting minute-by-minute stock returns, namely the ones of the S&P 500 stock constituents. We show that, unlike a trading strategy employing support vector machines, Factorization-Machine-based strategies attain positive returns after transactions costs for the years 2014 and 2015. Especially the approach applying the adaptive-order algorithm outperforms classical approaches with respect to a multitude of criteria, and it features very favorable characteristics.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2018.1521002 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:4:p:571-585
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2018.1521002
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().