Asian option pricing with orthogonal polynomials
Sander Willems
Quantitative Finance, 2019, vol. 19, issue 4, 605-618
Abstract:
In this paper we derive a series expansion for the price of a continuously sampled arithmetic Asian option in the Black–Scholes setting. The expansion is based on polynomials that are orthogonal with respect to the log-normal distribution. All terms in the series are fully explicit and no numerical integration nor any special functions are involved. We provide sufficient conditions to guarantee convergence of the series. The moment indeterminacy of the log-normal distribution introduces an asymptotic bias in the series, however we show numerically that the bias can safely be ignored in practice.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2018.1526396 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:4:p:605-618
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2018.1526396
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().