Backtesting extreme value theory models of expected shortfall
Alfonso Novales and
Laura Garcia-Jorcano
Quantitative Finance, 2019, vol. 19, issue 5, 799-825
Abstract:
We use stock market data to analyze the quality of alternative models and procedures for forecasting expected shortfall (ES) at different significance levels. We compute ES forecasts from conditional models applied to the full distribution of returns as well as from models that focus on tail events using extreme value theory (EVT). We also apply the semiparametric filtered historical simulation (FHS) approach to ES forecasting to obtain 10-day ES forecasts. At the 10-day horizon we combine FHS with EVT. The performance of the different models is assessed using six different ES backtests recently proposed in the literature. Our results suggest that conditional EVT-based models produce more accurate 1-day and 10-day ES forecasts than do non-EVT based models. Under either approach, asymmetric probability distributions for return innovations tend to produce better forecasts. Incorporating EVT in parametric or semiparametric approaches also improves ES forecasting performance. These qualitative results are also valid for the recent crisis period, even though all models then underestimate the level of risk. FHS narrows the range of numerical forecasts obtained from alternative models, thereby reducing model risk. Combining EVT and FHS seems to be best approach for obtaining accurate ES forecasts.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2018.1535182 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:5:p:799-825
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2018.1535182
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().