Real options under a double exponential jump-diffusion model with regime switching and partial information
Pengfei Luo,
Jie Xiong,
Jinqiang Yang and
Zhaojun Yang
Quantitative Finance, 2019, vol. 19, issue 6, 1061-1073
Abstract:
We consider the irreversible investment in a project which generates a cash flow following a double exponential jump-diffusion process and its expected return is governed by a continuous-time two-state Markov chain. If the expected return is observable, we present explicit expressions for the pricing and timing of the option to invest. With partial information, i.e. if the expected return is unobservable, we provide an explicit project value and an integral-differential equation for the pricing and timing of the option. We provide a method to measure the information value, i.e. the difference between the option values under the two different cases. We present numerical solutions by finite difference methods. By numerical analysis, we find that: (i) the higher the jump intensity, the later the option to invest is exercised, but its effect on the option value is ambiguous; (ii) the option value increases with the belief in a boom economy; (iii) if investors are more uncertain about the economic environment, information is more valuable; (iv) the more likely the transition from boom to recession, the lower the value of the option; (v) the bigger the dispersion of the expected return, the higher the information value; (vi) a higher cash flow volatility induces a lower information value.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2017.1328560 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:6:p:1061-1073
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2017.1328560
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().