Optimal investment and consumption under a continuous-time cointegration model with exponential utility
Guiyuan Ma and
Song-Ping Zhu
Quantitative Finance, 2019, vol. 19, issue 7, 1135-1149
Abstract:
In this paper, we study the effects of cointegration on optimal investment and consumption strategies for an investor with exponential utility. A Hamilton-Jacobi-Bellman (HJB) equation is derived first and then solved analytically. Both the optimal investment and consumption strategies are expressed in closed form. A verification theorem is also established to demonstrate that the solution of the HJB equation is indeed the solution of the original optimization problem under an integrability condition. In addition, a simple and sufficient condition is proposed to ensure that the integrability condition is satisfied. Financially, the optimal investment and consumption strategies are decomposed into two parts: the myopic part and the hedging demand caused by cointegration. Discussions on the hedging demand are carried out first, based on analytical formulae. Then numerical results show that ignoring the information about cointegration results in a utility loss.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1570317 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:7:p:1135-1149
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2019.1570317
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().