EconPapers    
Economics at your fingertips  
 

Operational risk quantified with spectral risk measures: a refined closed-form approximation

Bin Tong, Xundi Diao and Chongfeng Wu

Quantitative Finance, 2019, vol. 19, issue 7, 1221-1242

Abstract: The quantification of operational risk has become an important issue as a result of the new capital charges required by the Basel Capital Accord (Basel II) to cover the potential losses of this type of risk. In this paper, we investigate second-order approximation of operational risk quantified with spectral risk measures (OpSRMs) within the theory of second-order regular variation (2RV) and second-order subexponentiality. The result shows that asymptotically two cases (the fast convergence case and the slow convergence) arise depending on the range of the second-order parameter. We also show that the second-order approximation under 2RV is asymptotically equivalent to the slow convergence case. A number of Monte Carlo simulations for a range of empirically relevant frequency and severity distributions are employed to illustrate the performance of our second-order results. The simulation results indicate that our second-order approximations tend to reduce the estimation errors to a great degree, especially for the fast convergence case, and are able to capture the sub-extremal behavior of OpSRMs better than the first-order approximation. Our asymptotic results have implications for the regulation of financial institutions, and may provide further insights into the measurement and management of operational risk.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2018.1564066 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:7:p:1221-1242

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2018.1564066

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:19:y:2019:i:7:p:1221-1242