Target volatility option pricing in the lognormal fractional SABR model
Elisa Alòs,
Rupak Chatterjee,
Sebastian F. Tudor and
Tai-Ho Wang
Quantitative Finance, 2019, vol. 19, issue 8, 1339-1356
Abstract:
We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1574021 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:8:p:1339-1356
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2019.1574021
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().