EconPapers    
Economics at your fingertips  
 

Forecasting market states

Pier Francesco Procacci and Tomaso Aste

Quantitative Finance, 2019, vol. 19, issue 9, 1491-1498

Abstract: We propose a novel methodology to define, analyze and forecast market states. In our approach, market states are identified by a reference sparse precision matrix and a vector of expectation values. In our procedure, each multivariate observation is associated to a given market state accordingly to a minimization of a penalized Mahalanobis distance. The procedure is made computationally very efficient and can be used with a large number of assets. We demonstrate that this procedure is successful at clustering different states of the markets in an unsupervised manner. In particular, we describe an experiment with one hundred log-returns and two states in which the methodology automatically associates states prevalently to pre- and post-crisis periods with one state gathering periods with average positive returns and the other state periods with average negative returns, therefore discovering spontaneously the common classification of ‘bull’ and ‘bear’ markets. In another experiment, with again one hundred log-returns and two states, we demonstrate that this procedure can be efficiently used to forecast off-sample future market states with significant prediction accuracy. This methodology opens the way to a range of applications in risk management and trading strategies in the context where the correlation structure plays a central role.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1622313 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:9:p:1491-1498

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2019.1622313

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1491-1498