EconPapers    
Economics at your fingertips  
 

A multivariate distance nonlinear causality test based on partial distance correlation: a machine learning application to energy futures

German Creamer and Chihoon Lee

Quantitative Finance, 2019, vol. 19, issue 9, 1531-1542

Abstract: This paper proposes a multivariate distance nonlinear causality test (MDNC) using the partial distance correlation in a time series framework. Partial distance correlation as an extension of the Brownian distance correlation calculates the distance correlation between random vectors X and Y controlling for a random vector Z. Our test can detect nonlinear lagged relationships between time series, and when integrated with machine learning methods it can improve the forecasting power. We apply our method as a feature selection procedure and combine it with the support vector machine and random forests algorithms to study the forecast of the main energy financial time series (oil, coal, and natural gas futures). It shows substantial improvement in forecasting the fuel energy time series in comparison to the classical Granger causality method in time series.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1622300 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:9:p:1531-1542

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2019.1622300

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1531-1542