EconPapers    
Economics at your fingertips  
 

Detection of false investment strategies using unsupervised learning methods

Marcos López de Prado and Michael J. Lewis

Quantitative Finance, 2019, vol. 19, issue 9, 1555-1565

Abstract: In this paper we address the problem of selection bias under multiple testing in the context of investment strategies. We introduce an unsupervised learning algorithm that determines the number of effectively uncorrelated trials carried out in the context of a discovery. This estimate is critical for computing the familywise false positive probability, and for filtering out false investment strategies.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1622311 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:9:p:1555-1565

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2019.1622311

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1555-1565