EconPapers    
Economics at your fingertips  
 

Can machine learning approaches predict corporate bankruptcy? Evidence from a qualitative experimental design

Salim Lahmiri and Stelios Bekiros

Quantitative Finance, 2019, vol. 19, issue 9, 1569-1577

Abstract: Bankruptcy prediction has received a growing interest in corporate finance and risk management recently. Although numerous studies in the literature have dealt with various statistical and artificial intelligence classifiers, their performance in credit risk forecasting needs to be further scrutinized compared to other methods. In the spirit of Chen, Härdle and Moro (2011, Quantitative Finance), we design an empirical study to assess the effectiveness of various machine learning topologies trained with big data approaches and qualitative, rather than quantitative, information as input variables. The experimental results from a ten-fold cross-validation methodology demonstrate that a generalized regression neural topology yields an accuracy measurement of 99.96%, a sensitivity measure of 99.91% and specificity of 100%. Indeed, this specific model outperformed multi-layer back-propagation networks, probabilistic neural networks, radial basis functions and regression trees, as well as other advanced classifiers. The utilization of advanced nonlinear classifiers based on big data methodologies and machine learning training generates outperforming results compared to traditional methods for bankruptcy forecasting and risk measurement.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1588468 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:9:p:1569-1577

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2019.1588468

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-04-07
Handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1569-1577