EconPapers    
Economics at your fingertips  
 

Estimation of risk contributions with MCMC

Takaaki Koike and Mihoko Minami

Quantitative Finance, 2019, vol. 19, issue 9, 1579-1597

Abstract: Determining risk contributions of unit exposures to portfolio-wide economic capital is an important task in financial risk management. Computing risk contributions involves difficulties caused by rare-event simulations. In this study, we address the problem of estimating risk contributions when the total risk is measured by value-at-risk (VaR). Our proposed estimator of VaR contributions is based on the Metropolis-Hasting (MH) algorithm, which is one of the most prevalent Markov chain Monte Carlo (MCMC) methods. Unlike existing estimators, our MH-based estimator consists of samples from the conditional loss distribution given a rare event of interest. This feature enhances sample efficiency compared with the crude Monte Carlo method. Moreover, our method has consistency and asymptotic normality, and is widely applicable to various risk models having a joint loss density. Our numerical experiments based on simulation and real-world data demonstrate that in various risk models, even those having high-dimensional (≈500) inhomogeneous margins, our MH estimator has smaller bias and mean squared error when compared with existing estimators.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1588469 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:9:p:1579-1597

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2019.1588469

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1579-1597