Forward-looking portfolio selection with multivariate non-Gaussian models
Michele Leonardo Bianchi and
Gian Luca Tassinari
Quantitative Finance, 2020, vol. 20, issue 10, 1645-1661
Abstract:
In this study, we suggest a portfolio selection framework based on time series of stock log-returns, option-implied information, and multivariate non-Gaussian processes. We empirically assess a multivariate extension of the normal tempered stable (NTS) model and of the generalized hyperbolic (GH) one by implementing an estimation method that simultaneously calibrates the multivariate time series of log-returns and, for each margin, the univariate observed one-month implied volatility smile. To extract option-implied information, the connection between the historical measure P and the risk-neutral measure Q, needed to price options, is provided by the multivariate Esscher transform. The method is applied to fit a 50-dimensional series of stock returns, to evaluate widely known portfolio risk measures and to perform a forward-looking portfolio selection analysis. The proposed models are able to produce asymmetries, heavy tails, both linear and non-linear dependence and, to calibrate them, there is no need for liquid multivariate derivative quotes.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1733057 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:10:p:1645-1661
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2020.1733057
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().