EconPapers    
Economics at your fingertips  
 

Unveiling the relation between herding and liquidity with trader lead-lag networks

Carlo Campajola, Fabrizio Lillo and Daniele Tantari

Quantitative Finance, 2020, vol. 20, issue 11, 1765-1778

Abstract: We propose a method to infer lead-lag networks of traders from the observation of their trade record as well as to reconstruct their state of supply and demand when they do not trade. The method relies on the Kinetic Ising model to describe how information propagates among traders, assigning a positive or negative ‘opinion’ to all agents about whether the traded asset price will go up or down. This opinion is reflected by their trading behavior, but whenever the trader is not active in a given time window, a missing value will arise. Using a recently developed inference algorithm, we are able to reconstruct a lead-lag network and to estimate the unobserved opinions, giving a clearer picture about the state of supply and demand in the market at all times. We apply our method to a dataset of clients of a major dealer in the Foreign Exchange market at the 5 minute time scale. We identify leading players in the market and define a herding measure based on the observed and inferred opinions. We show the causal link between herding and liquidity in the inter-dealer market used by dealers to rebalance their inventories.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1763442 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:11:p:1765-1778

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2020.1763442

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:20:y:2020:i:11:p:1765-1778