EconPapers    
Economics at your fingertips  
 

Bayesian regularized artificial neural networks for the estimation of the probability of default

Eduard Sariev and Guido Germano

Quantitative Finance, 2020, vol. 20, issue 2, 311-328

Abstract: Artificial neural networks (ANNs) have been extensively used for classification problems in many areas such as gene, text and image recognition. Although ANNs are popular also to estimate the probability of default in credit risk, they have drawbacks; a major one is their tendency to overfit the data. Here we propose an improved Bayesian regularization approach to train ANNs and compare it to the classical regularization that relies on the back-propagation algorithm for training feed-forward networks. We investigate different network architectures and test the classification accuracy on three data sets. Profitability, leverage and liquidity emerge as important financial default driver categories.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1633014 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: Bayesian regularized artificial neural networks for the estimation of the probability of default (2020) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:2:p:311-328

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2019.1633014

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:quantf:v:20:y:2020:i:2:p:311-328