Calibrating rough volatility models: a convolutional neural network approach
Henry Stone
Quantitative Finance, 2020, vol. 20, issue 3, 379-392
Abstract:
In this paper, we use convolutional neural networks to find the Hölder exponent of simulated sample paths of the rBergomi model, a recently proposed stock price model used in mathematical finance. We contextualise this as a calibration problem, thereby providing a very practical and useful application.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1654126 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:20:y:2020:i:3:p:379-392
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2019.1654126
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().